This vignette documents how
dabestr
is able to generate estimation plots for
experiments with repeated-measures designs. dabestr
allows
for the calculation and plotting of effect sizes for:
baseline
)sequential
)This is an improved version of paired data plotting in previous versions, which only supported computations involving one test group and one control group.
To use these features, you can simply declare the argument
paired = "sequential"
or paired = "baseline"
correspondingly while running load()
. You must also pass a
column in the dataset that indicates the identity of each observation,
using the id_col
keyword.
set.seed(12345) # Fix the seed so the results are replicable.
# pop_size = 10000 # Size of each population.
N <- 20 # The number of samples taken from each population
# Create samples
c1 <- rnorm(N, mean = 3, sd = 0.4)
c2 <- rnorm(N, mean = 3.5, sd = 0.75)
c3 <- rnorm(N, mean = 3.25, sd = 0.4)
t1 <- rnorm(N, mean = 3.5, sd = 0.5)
t2 <- rnorm(N, mean = 2.5, sd = 0.6)
t3 <- rnorm(N, mean = 3, sd = 0.75)
t4 <- rnorm(N, mean = 3.5, sd = 0.75)
t5 <- rnorm(N, mean = 3.25, sd = 0.4)
t6 <- rnorm(N, mean = 3.25, sd = 0.4)
# Add a `gender` column for coloring the data.
gender <- c(rep("Male", N / 2), rep("Female", N / 2))
# Add an `id` column for paired data plotting.
id <- 1:N
# Combine samples and gender into a DataFrame.
df <- tibble::tibble(
`Control 1` = c1, `Control 2` = c2, `Control 3` = c3,
`Test 1` = t1, `Test 2` = t2, `Test 3` = t3, `Test 4` = t4, `Test 5` = t5, `Test 6` = t6,
Gender = gender, ID = id
)
df <- df %>%
tidyr::gather(key = Group, value = Measurement, -ID, -Gender)
two_groups_paired_sequential <- load(df,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"),
paired = "sequential", id_col = ID
)
print(two_groups_paired_sequential)
#> DABESTR v2023.9.12
#> ==================
#>
#> Good morning!
#> The current time is 05:28 AM on Tuesday November 12, 2024.
#>
#> Paired effect size(s) for the sequential design of repeated-measures experiment
#> with 95% confidence intervals will be computed for:
#> 1. Test 1 minus Control 1
#>
#> 5000 resamples will be used to generate the effect size bootstraps.
two_groups_paired_baseline <- load(df,
x = Group, y = Measurement,
idx = c("Control 1", "Test 1"),
paired = "baseline", id_col = ID
)
print(two_groups_paired_baseline)
#> DABESTR v2023.9.12
#> ==================
#>
#> Good morning!
#> The current time is 05:28 AM on Tuesday November 12, 2024.
#>
#> Paired effect size(s) for repeated measures against baseline
#> with 95% confidence intervals will be computed for:
#> 1. Test 1 minus Control 1
#>
#> 5000 resamples will be used to generate the effect size bootstraps.
When only 2 paired data groups are involved, assigning either
“baseline” or “sequential” to paired
will give you the same
numerical results.
two_groups_paired_sequential.mean_diff <- mean_diff(two_groups_paired_sequential)
two_groups_paired_baseline.mean_diff <- mean_diff(two_groups_paired_baseline)
print(two_groups_paired_sequential.mean_diff)
#> DABESTR v2023.9.12
#> ==================
#>
#> Good morning!
#> The current time is 05:28 AM on Tuesday November 12, 2024.
#>
#> The paired mean difference between Test 1 and Control 1 is 0.585 [95%CI 0.307, 0.869].
#> The p-value of the two-sided permutation t-test is 0.0022, calculated for legacy purposes only.
#>
#> 5000 bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.
#> Any p-value reported is the probability of observing the effect size (or greater),
#> assuming the null hypothesis of zero difference is true.
#> For each p-value, 5000 reshuffles of the control and test labels were performed.
print(two_groups_paired_baseline.mean_diff)
#> DABESTR v2023.9.12
#> ==================
#>
#> Good morning!
#> The current time is 05:28 AM on Tuesday November 12, 2024.
#>
#> The paired mean difference between Test 1 and Control 1 is 0.585 [95%CI 0.307, 0.869].
#> The p-value of the two-sided permutation t-test is 0.0022, calculated for legacy purposes only.
#>
#> 5000 bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.
#> Any p-value reported is the probability of observing the effect size (or greater),
#> assuming the null hypothesis of zero difference is true.
#> For each p-value, 5000 reshuffles of the control and test labels were performed.
For paired data, we use slopegraphs (another innovation from Edward Tufte) to connect paired observations. Both Gardner-Altman and Cumming plots support this.
dabest_plot(two_groups_paired_sequential.mean_diff,
float_contrast = FALSE,
raw_marker_size = 0.5, raw_marker_alpha = 0.3,
contrast_ylim = c(-0.3, 1.3)
)
#> Warning in get_plot_component(plot, "guide-box"): Multiple components found;
#> returning the first one. To return all, use `return_all = TRUE`.
dabest_plot(two_groups_paired_baseline.mean_diff,
float_contrast = FALSE,
raw_marker_size = 0.5, raw_marker_alpha = 0.3,
contrast_ylim = c(-0.3, 1.3)
)
#> Warning in get_plot_component(plot, "guide-box"): Multiple components found;
#> returning the first one. To return all, use `return_all = TRUE`.
You can also create repeated-measures plots with multiple test
groups. In this case, declaring paired
to be “sequential”
or “baseline” will generate the same slopegraph, reflecting the
repeated-measures experimental design, but different contrast plots, to
show the “sequential” or “baseline” comparison:
sequential_repeated_measures.mean_diff <- load(df,
x = Group, y = Measurement,
idx = c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
paired = "sequential", id_col = ID
) %>%
mean_diff()
print(sequential_repeated_measures.mean_diff)
#> DABESTR v2023.9.12
#> ==================
#>
#> Good morning!
#> The current time is 05:28 AM on Tuesday November 12, 2024.
#>
#> The paired mean difference between Test 1 and Control 1 is 0.585 [95%CI 0.307, 0.869].
#> The p-value of the two-sided permutation t-test is 0.0022, calculated for legacy purposes only.
#>
#> The paired mean difference between Test 2 and Test 1 is -0.871 [95%CI -1.244, -0.489].
#> The p-value of the two-sided permutation t-test is 0.0002, calculated for legacy purposes only.
#>
#> The paired mean difference between Test 3 and Test 2 is 0.293 [95%CI -0.136, 0.713].
#> The p-value of the two-sided permutation t-test is 0.2211, calculated for legacy purposes only.
#>
#> 5000 bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.
#> Any p-value reported is the probability of observing the effect size (or greater),
#> assuming the null hypothesis of zero difference is true.
#> For each p-value, 5000 reshuffles of the control and test labels were performed.
dabest_plot(sequential_repeated_measures.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
#> Warning in get_plot_component(plot, "guide-box"): Multiple components found;
#> returning the first one. To return all, use `return_all = TRUE`.
baseline_repeated_measures.mean_diff <- load(df,
x = Group, y = Measurement,
idx = c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
paired = "baseline", id_col = ID
) %>%
mean_diff()
print(baseline_repeated_measures.mean_diff)
#> DABESTR v2023.9.12
#> ==================
#>
#> Good morning!
#> The current time is 05:28 AM on Tuesday November 12, 2024.
#>
#> The paired mean difference between Test 1 and Control 1 is 0.585 [95%CI 0.307, 0.869].
#> The p-value of the two-sided permutation t-test is 0.0022, calculated for legacy purposes only.
#>
#> The paired mean difference between Test 2 and Control 1 is -0.286 [95%CI -0.585, 0.046].
#> The p-value of the two-sided permutation t-test is 0.1022, calculated for legacy purposes only.
#>
#> The paired mean difference between Test 3 and Control 1 is 0.007 [95%CI -0.323, 0.383].
#> The p-value of the two-sided permutation t-test is 0.7381, calculated for legacy purposes only.
#>
#> 5000 bootstrap samples were taken; the confidence interval is bias-corrected and accelerated.
#> Any p-value reported is the probability of observing the effect size (or greater),
#> assuming the null hypothesis of zero difference is true.
#> For each p-value, 5000 reshuffles of the control and test labels were performed.
dabest_plot(baseline_repeated_measures.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
#> Warning in get_plot_component(plot, "guide-box"): Multiple components found;
#> returning the first one. To return all, use `return_all = TRUE`.
As with unpaired data, dabestr
empowers you to perform
complex visualizations and statistics for paired data as well.
multi_baseline_repeated_measures.mean_diff <- load(df,
x = Group, y = Measurement,
idx = list(
c(
"Control 1", "Test 1",
"Test 2", "Test 3"
),
c(
"Control 2", "Test 4",
"Test 5", "Test 6"
)
),
paired = "baseline", id_col = ID
) %>%
mean_diff()
dabest_plot(multi_baseline_repeated_measures.mean_diff,
raw_marker_size = 0.5, raw_marker_alpha = 0.3
)
#> Warning in get_plot_component(plot, "guide-box"): Multiple components found;
#> returning the first one. To return all, use `return_all = TRUE`.