Package: dabestr 2023.9.12
Yishan Mai
dabestr: Data Analysis using Bootstrap-Coupled Estimation
Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.
Authors:
dabestr_2023.9.12.tar.gz
dabestr_2023.9.12.zip(r-4.5)dabestr_2023.9.12.zip(r-4.4)dabestr_2023.9.12.zip(r-4.3)
dabestr_2023.9.12.tgz(r-4.4-any)dabestr_2023.9.12.tgz(r-4.3-any)
dabestr_2023.9.12.tar.gz(r-4.5-noble)dabestr_2023.9.12.tar.gz(r-4.4-noble)
dabestr_2023.9.12.tgz(r-4.4-emscripten)dabestr_2023.9.12.tgz(r-4.3-emscripten)
dabestr.pdf |dabestr.html✨
dabestr/json (API)
NEWS
# Install 'dabestr' in R: |
install.packages('dabestr', repos = c('https://acclab.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/acclab/dabestr/issues
data-analysisdata-visualizationestimationstatistics
Last updated 1 years agofrom:74a9d60e12. Checks:OK: 7. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 12 2024 |
R-4.5-win | OK | Nov 12 2024 |
R-4.5-linux | OK | Nov 12 2024 |
R-4.4-win | OK | Nov 12 2024 |
R-4.4-mac | OK | Nov 12 2024 |
R-4.3-win | OK | Nov 12 2024 |
R-4.3-mac | OK | Nov 12 2024 |
Exports:%>%cliffs_deltacohens_dcohens_hdabest_plothedges_gloadmean_diffmedian_diff
Dependencies:beeswarmbootbrunnermunzelclicolorspacecowplotcpp11dplyreffsizefansifarvergenericsggbeeswarmggplot2ggscigluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviporviridisLitewithr
Controlling Plot Aesthetics
Rendered fromplot_aesthetics.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Sample Datasets
Rendered fromdatasets.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Tutorial: Basics
Rendered fromtutorial_basics.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Tutorial: Delta-Delta
Rendered fromtutorial_deltadelta.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Tutorial: Mini-Meta Delta
Rendered fromtutorial_minimeta.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Tutorial: Proportion Plots
Rendered fromtutorial_proportion_plots.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Tutorial: Repeated Measures
Rendered fromtutorial_repeated_measures.Rmd
usingknitr::rmarkdown
on Nov 12 2024.Last update: 2023-09-12
Started: 2023-09-12
Readme and manuals
Help Manual
Help page | Topics |
---|---|
Producing an estimation plot | dabest_plot |
Calculating effect sizes | cliffs_delta cohens_d cohens_h effect_size hedges_g mean_diff median_diff |
Loading data with dabestr | load |
Adjustable Plot Aesthetics | plot_kwargs |