Package: dabestr 2023.9.12

Yishan Mai

dabestr: Data Analysis using Bootstrap-Coupled Estimation

Data Analysis using Bootstrap-Coupled ESTimation. Estimation statistics is a simple framework that avoids the pitfalls of significance testing. It uses familiar statistical concepts: means, mean differences, and error bars. More importantly, it focuses on the effect size of one's experiment/intervention, as opposed to a false dichotomy engendered by P values. An estimation plot has two key features: 1. It presents all datapoints as a swarmplot, which orders each point to display the underlying distribution. 2. It presents the effect size as a bootstrap 95% confidence interval on a separate but aligned axes. Estimation plots are introduced in Ho et al., Nature Methods 2019, 1548-7105. <doi:10.1038/s41592-019-0470-3>. The free-to-view PDF is located at <https://www.nature.com/articles/s41592-019-0470-3.epdf?author_access_token=Euy6APITxsYA3huBKOFBvNRgN0jAjWel9jnR3ZoTv0Pr6zJiJ3AA5aH4989gOJS_dajtNr1Wt17D0fh-t4GFcvqwMYN03qb8C33na_UrCUcGrt-Z0J9aPL6TPSbOxIC-pbHWKUDo2XsUOr3hQmlRew%3D%3D>.

Authors:Joses W. Ho [aut], Kah Seng Lian [aut], Zhuoyu Wang [aut], Jun Yang Liao [aut], Felicia Low [aut], Tayfun Tumkaya [aut], Yishan Mai [cre, ctb], Sangyu Xu [ctb], Hyungwon Choi [ctb], Adam Claridge-Chang [ctb], ACCLAB [cph, fnd]

dabestr_2023.9.12.tar.gz
dabestr_2023.9.12.zip(r-4.5)dabestr_2023.9.12.zip(r-4.4)dabestr_2023.9.12.zip(r-4.3)
dabestr_2023.9.12.tgz(r-4.4-any)dabestr_2023.9.12.tgz(r-4.3-any)
dabestr_2023.9.12.tar.gz(r-4.5-noble)dabestr_2023.9.12.tar.gz(r-4.4-noble)
dabestr_2023.9.12.tgz(r-4.4-emscripten)dabestr_2023.9.12.tgz(r-4.3-emscripten)
dabestr.pdf |dabestr.html
dabestr/json (API)
NEWS

# Install 'dabestr' in R:
install.packages('dabestr', repos = c('https://acclab.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/acclab/dabestr/issues

Datasets:

    On CRAN:

    data-analysisdata-visualizationestimationstatistics

    9.80 score 215 stars 141 scripts 559 downloads 16 mentions 9 exports 44 dependencies

    Last updated 1 years agofrom:74a9d60e12. Checks:OK: 7. Indexed: yes.

    TargetResultDate
    Doc / VignettesOKNov 12 2024
    R-4.5-winOKNov 12 2024
    R-4.5-linuxOKNov 12 2024
    R-4.4-winOKNov 12 2024
    R-4.4-macOKNov 12 2024
    R-4.3-winOKNov 12 2024
    R-4.3-macOKNov 12 2024

    Exports:%>%cliffs_deltacohens_dcohens_hdabest_plothedges_gloadmean_diffmedian_diff

    Dependencies:beeswarmbootbrunnermunzelclicolorspacecowplotcpp11dplyreffsizefansifarvergenericsggbeeswarmggplot2ggscigluegtableisobandlabelinglatticelifecyclemagrittrMASSMatrixmgcvmunsellnlmepillarpkgconfigpurrrR6RColorBrewerrlangscalesstringistringrtibbletidyrtidyselectutf8vctrsviporviridisLitewithr

    Controlling Plot Aesthetics

    Rendered fromplot_aesthetics.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Sample Datasets

    Rendered fromdatasets.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Tutorial: Basics

    Rendered fromtutorial_basics.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Tutorial: Delta-Delta

    Rendered fromtutorial_deltadelta.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Tutorial: Mini-Meta Delta

    Rendered fromtutorial_minimeta.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Tutorial: Proportion Plots

    Rendered fromtutorial_proportion_plots.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Tutorial: Repeated Measures

    Rendered fromtutorial_repeated_measures.Rmdusingknitr::rmarkdownon Nov 12 2024.

    Last update: 2023-09-12
    Started: 2023-09-12

    Readme and manuals

    Help Manual

    Help pageTopics
    Producing an estimation plotdabest_plot
    Calculating effect sizescliffs_delta cohens_d cohens_h effect_size hedges_g mean_diff median_diff
    Loading data with dabestrload
    Adjustable Plot Aestheticsplot_kwargs